If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+38a+34=0
a = 3; b = 38; c = +34;
Δ = b2-4ac
Δ = 382-4·3·34
Δ = 1036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1036}=\sqrt{4*259}=\sqrt{4}*\sqrt{259}=2\sqrt{259}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{259}}{2*3}=\frac{-38-2\sqrt{259}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{259}}{2*3}=\frac{-38+2\sqrt{259}}{6} $
| p=6191(1.04)^6 | | F(x)=5x^2+10 | | 4(-8+1)+2b=3(2b-1) | | y=285(1+0.75)^1 | | 25000(0.86)^5=x | | 3(x-5)=12=2x | | Y=17.7x+10 | | 7x+9=3x-21 | | 9x^2-82x+90000=0 | | 8x+2(3x-12=-122 | | 7x+9=-21 | | B=10a-5 | | Y=2x2+12x-8 | | X^2-8x+10000=0 | | 4x+49=8x-118 | | c2=25+ | | F=17x8 | | 4e+5=13 | | (5w)=3 | | X/4+x/5=4/5 | | -10(-8+n)=-20 | | 0.45=1.2n-1.5 | | 8b-6=146 | | 142-8x=78 | | -5.5(12a+2)=286 | | 84+-6x=24 | | 15x+9/3=5x+ | | N=5m-11 | | 108+-5x=73 | | (7x+5)=(4x-8) | | (5x+12)=(x-4) | | z+20=6z-40 |